Skin lamellar bodies are not discrete vesicles but part of a tubuloreticular network

den Hollander, L.; Han, H-M.; de Winter, M.; Svensson, L.; Masich, S.; Daneholt, B.; Norlén, L.

Abstract

Improved knowledge of the topology of lamellar bodies is a prerequisite for a molecular-level understanding of skin barrier formation, which in turn may provide clues as to the underlying causes of barrier-deficient skin disease. The aim of this study was to examine the key question of continuity vs. discreteness of the lamellar body system using 3 highly specialized and complementary 3-dimensional (3D) electron microscopy methodologies; tomography of vitreous sections (TOVIS), freeze-substitution serial section electron tomography (FS-SET), and focused ion beam scanning electron microscopy (FIB-SEM) tomography. We present here direct evidence that lamellar bodies are not discrete vesicles, but are part of a tubuloreticular membrane network filling out the cytoplasm and being continuous with the plasma membrane of stratum granulosum cells. This implies that skin barrier formation could be regarded as a membrane folding/unfolding process, but not as a lamellar body fusion process.